Licenca
To delo je na voljo pod pogoji slovenske licence Creative Commons 2.5:

priznanje avtorstva - nekomercialno - deljenje pod enakimi pogoji.

Celotna licenca je na voljo na spletu na naslovu http://creativecommons.org/licenses/by-nc-sa/2.5/si/. V skladu s to licenco je dovoljeno vsakemu uporabniku delo razmnoževati, distribuirati, javno priobčevati, dajati v najem in tudi predelovati, vendar samo v nekomercialne namene in ob pogoju, da navede avtorja oziroma avtorje in izdajatelja tega dela. Če uporabnik delo predela, kar pomeni, da ga spremeni, preoblikuje, prevede ali uporabi to delo v svojem delu, lahko predelavo dela ponudi na voljo le pod pogoji, ki so enaki pogojem iz te licence oziroma pod enako licenco.

Skupni delitelji in večkratniki

Opazuj, kdaj sta stolpa enako visoka. Spreminjaj višino posamezne opeke in njihovo število.

Kaj sporoča število pod posameznim stolpom?

Naj bo višina prve opeke $5$ enot, druge pa $2$ enoti. Spreminjaj število opek in ugotovi, ali lahko sestaviš enako visoka stolpa. Kakšna je tedaj višina?

Razišči, kako višina opek ($a$, $b$) vpliva na sestavo dveh enako visokih stolpov. V preglednico zapiši najmanjšo možno višino $c$, pri kateri se to zgodi.

$a$  $b$ 
$c$
$5$
$2$
$10$
$2$
$3$
6
$3$
$5$
15
$2$
$4$
4
$2$
$6$
  6

Ponovitev

1. Praštevilski delitelji števila $35$ so:

2. Ponovi kriterije za deljivost s števili $2$, $3$, $4$, $5$, $6$, $8$, $9$ in $10$.

3. Vsakemu naravnemu številu lahko priredimo praštevilski razcep. Zapiši na tak način število $126$.

4. Ponovi, kaj je delitelj in kaj večkratnik naravnega števila.

5. S pomočjo Vietovega pravila dopolni razcep izraza.

$x^2+2x-24=(x+$ 6 $)\cdot (x-$ 4 $)$

V nadaljevanju bomo iskali skupne delitelje in skupne večkratnike števil in izrazov.

<NAZAJ
>NAPREJ186/661