Licenca
To delo je na voljo pod pogoji slovenske licence Creative Commons 2.5:

priznanje avtorstva - nekomercialno - deljenje pod enakimi pogoji.

Celotna licenca je na voljo na spletu na naslovu http://creativecommons.org/licenses/by-nc-sa/2.5/si/. V skladu s to licenco je dovoljeno vsakemu uporabniku delo razmnoževati, distribuirati, javno priobčevati, dajati v najem in tudi predelovati, vendar samo v nekomercialne namene in ob pogoju, da navede avtorja oziroma avtorje in izdajatelja tega dela. Če uporabnik delo predela, kar pomeni, da ga spremeni, preoblikuje, prevede ali uporabi to delo v svojem delu, lahko predelavo dela ponudi na voljo le pod pogoji, ki so enaki pogojem iz te licence oziroma pod enako licenco.
Navodila

Ploskovna diagonala kocke

Lea želi darilno škatlico v obliki kocke okrasiti s trakovi. Trakove bo prilepila na mejne ploskve kocke tako, da bo z njimi povezala po dve nasprotni oglišči vsake mejne ploskve. Dva trakova je že prilepila. Pomagaj ji prilepiti še vse ostale. S točko ob kocki lahko kocko premikaš.

Dopolni. Števila piši s številko.

Vsaka mejna ploskev kocke je kvadrat . Število mejnih ploskev kocke: 6 . Število trakov na eni ploskvi: 2 . Skupno število vseh trakov: 12 . Daljica, ki ima za krajišči nasprotni oglišči kvadrata, je diagonala .  

Ploskovna diagonala kocke je diagonala vsake mejne ploskve kocke.

Rob kocke je dolg $24\,{\rm cm}$. Ali $4\,{\rm m}$ traku zadostuje za to, da Lea škatlo oblepi s trakovi tako, da potekajo po vseh diagonalah kocke?

Izračunaj dolžino ene ploskovne diagonale. Upoštevaj, da je $\sqrt {2}\doteq 1,41$. Pomagaj si s prikazom.

Lea ima dovolj traku, da oblepi diagonale kocke.

Drži. Ne drži.

Ploskovna diagonala kocke ($d_1$) je daljica, ki povezuje nasprotni oglišči na eni mejni ploskve kocke.

Dolžina ploskovne diagonale kocke $d_1=a\cdot \sqrt{2}$.

Oznake diagonal se v različnih gradivih razlikujejo.

<NAZAJ
>NAPREJ483/540