a) $\left(\sqrt 8+\sqrt 2\right)\cdot \sqrt 2=$ 6
b) $\left(\sqrt {18}+\sqrt 2\right)^2=$ 32
c) $\left(\sqrt {18}-\sqrt 2\right)^2=$ 8
č) $\left(\sqrt {18}+\sqrt 2\right)\cdot \left(\sqrt{18}-\sqrt 2\right)=$ 16
Pokaži, da je vrednost izraza $\sqrt{\sqrt[3]{14-2\sqrt{33}}\cdot\sqrt[3]{14+2\sqrt{33}}}$ enaka $2$.
Za zgled si oglejmo naslednje primere:
a) $\large \frac{2}{\sqrt 3}=\frac{2\cdot \sqrt 3}{\sqrt 3\cdot \sqrt 3}=\frac{2\cdot \sqrt 3}{3}=\frac{2\sqrt 3}{3}$
b) $\large \frac{1}{2+\sqrt 3}=\frac{1\cdot(2- \sqrt 3)}{(2+\sqrt 3)\cdot (2- \sqrt 3)}=\frac{2-\sqrt 3}{4-3}={\small 2-\sqrt 3}$
c) $\large \frac{1}{\sqrt 3-\sqrt 2}=\frac{1\cdot(\sqrt 3+ \sqrt 2)}{(\sqrt 3-\sqrt 2)\cdot (\sqrt 3+ \sqrt 2)}=\frac{\sqrt 3+ \sqrt 2}{3-2}={\small \sqrt 3 +\sqrt 2}$